Advertisement

To support safe provision of mechanical thrombectomy services for patients with acute ischaemic stroke: 2021 consensus guidance from BASP, BSNR, ICSWP, NACCS, and UKNG

Published:September 03, 2021DOI:https://doi.org/10.1016/j.crad.2021.08.002
      This document supersedes the existing professional multisociety consensus guidance published in 2015.
      • White P.M.
      • Bhalla A.
      • Dinsmore J.
      • et al.
      Standards for providing safe acute ischaemic stroke thrombectomy services (September 2015).
      It has been produced in order to respond to the considerable volume of relevant new high-quality trial evidence that has become available since September 2015. It should be emphasised that this document remains applicable to all constituent nations of the UK, and thus, deliberately avoids the use of acronyms or reference to structures that do not pertain to all four nations wherever possible. The guidance was developed (and is now updated) to aid thrombectomy delivery by describing the key requirements for an endovascular stroke therapy service, including the service support requirements and basic performance standards that should be met. Indeed, it substantially influenced the commissioning of thrombectomy by NHS England in 2017.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • White P.M.
        • Bhalla A.
        • Dinsmore J.
        • et al.
        Standards for providing safe acute ischaemic stroke thrombectomy services (September 2015).
        Clin Radiol. 2017; 72: 175.e1-175.e9
        • Saber H.
        • Navi B.B.
        • Grotta J.C.
        • et al.
        Real-world treatment trends in endovascular stroke therapy.
        Stroke. 2019; 50: 683-689
        • Rothwell P.M.
        • Coull A.J.
        • Giles M.F.
        • et al.
        Change in stroke incidence, mortality, case-fatality, severity, and risk factors in Oxfordshire, UK from 1981 to 2004 (Oxford vascular study).
        Lancet. 2004; 363: 1925-1933
        • Geddes J.M.
        • Fear J.
        • Tennant A.
        • et al.
        Prevalence of self reported stroke in a population in northern England.
        J Epidemiol Commun Health. 1996; 50: 140-143
        • Patel A.
        • Berdunov V.
        • Quayyum Z.
        • et al.
        Estimated societal costs of stroke in the UK based on a discrete event simulation.
        Age Ageing. 2020; 49: 270-276
        • Kwiatkowski T.
        • Libman R.
        • Frankel M.
        • et al.
        Effects of tissue plasminogen activator for acute ischaemic stroke at one year.
        N Engl J Med. 1999; 340: 1781-1787
        • Rha J.-H.
        • Saver J.L.
        The impact of recanalization on ischaemic stroke outcome. A meta-analysis.
        Stroke. 2007; 38: 967-973
        • Saqqur M.
        • Uchino K.
        • Demchuk A.M.
        • et al.
        Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke.
        Stroke. 2007; 38: 948-954
        • Berkhemer O.A.
        • Fransen P.S.
        • Beumer D.
        • et al.
        A Randomized trial of Intra- arterial treatment for acute Ischemic stroke.
        N Engl J Med. 2015; 372: 11-20
        • Goyal M.
        • Demchuk A.M.
        • Menon B.K.
        • et al.
        Randomized assessment of rapid endovascular treatment of ischaemic stroke.
        N Engl J Med. 2015; 372: 1019-1030
        • Campbell B.C.
        • Mitchell P.J.
        • Kleinig T.J.
        • et al.
        Endovascular therapy for ischaemic stroke with perfusion-imaging selection.
        N Engl J Med. 2015; 372: 1009-1018
        • Saver J.L.
        • Goyal M.
        • Bonafe A.
        • et al.
        Stent-retriever thrombectomy after intravenous t-pA vs. tpA alone in stroke.
        N Engl J Med. 2015; 372: 2229-2285
        • Jovin T.G.
        • Chamorro A.
        • Cobo E.
        • et al.
        Thrombectomy within 8 h after symptom onset in Ischemic stroke.
        N Engl J Med. 2015; 372: 2296-2306
        • Goyal M.
        • Menon B.K.
        • van Zwam W.H.
        • et al.
        Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials.
        Lancet. 2016; 387: 1723-1731
        • Bracard S.
        • Ducrocq X.
        • Mas J.L.
        • et al.
        Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial.
        Lancet Neurol. 2016; 15: 1138-1147
        • Mocco J.
        • Zaidat O.O.
        • von Kummer R.
        • et al.
        Aspiration thrombectomy after intravenous alteplase versus intravenous alteplase alone.
        Stroke. 2016; 47: 2331-2338
        • Muir K.W.
        • Ford G.A.
        • Messow C.M.
        • et al.
        Endovascular therapy for acute ischaemic stroke: the Pragmatic Ischaemic Stroke Thrombectomy Evaluation (PISTE) randomised, controlled trial.
        J Neurol Neurosurg Psychiatr. 2017; 88: 38-44
        • Román L.S.
        • Menon B.K.
        • Blasco J.
        • et al.
        Imaging features and safety and efficacy of endovascular stroke treatment: a meta-analysis of individual patient-level data.
        Lancet Neurol. 2018; 17: 895-904
        • Menon B.K.
        • Hill M.D.
        • Davalos A.
        • et al.
        Efficacy of endovascular thrombectomy in patients with M2 segment middle cerebral artery occlusions: meta-analysis of data from the HERMES Collaboration.
        J Neurointerv Surg. 2019; 11: 1065-1069
        • Nogueira R.G.
        • Jadhav A.P.
        • Haussen D.C.
        • et al.
        Thrombectomy 6 to 24 h after stroke with a mismatch between deficit and infarct.
        N Engl J Med. 2018; 378: 11-21
        • Albers G.W.
        • Marks M.P.
        • Kemp S.
        • et al.
        Thrombectomy for stroke at 6 to 16 h with selection by perfusion imaging.
        N Engl J Med. 2018; 378: 708-718
        • Turc G.
        • Bhogal P.
        • Fischer U.
        • et al.
        European stroke organisation (ESO) - European society for minimally invasive neurological therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischaemic stroke. Endorsed by stroke alliance for Europe (SAFE).
        Eur Stroke J. 2019; 4: 6-12
        • NICE
        Stroke and transient ischaemic attack in over 16s: diagnosis and initial management.
        (NICE guideline [NG128])2019 (Available at:) (Accessed December 2020)
        • Lindsberg P.J.
        • Mattle H.P.
        Therapy of basilar artery occlusion: a systematic analysis comparing intra-arterial and intravenous thrombolysis.
        Stroke. 2006; 37: 922-928
        • Meinel T.R.
        • Kaesmacher J.
        • Chaloulos-Iakovidis P.
        • et al.
        Mechanical thrombectomy for basilar artery occlusion: efficacy, outcomes, and futile recanalization in comparison with the anterior circulation.
        J Neurointerv Surg. 2019; 11: 1174-1180
        • Phan K.
        • Phan S.
        • Huo Y.R.
        • et al.
        Outcomes of endovascular treatment of basilar artery occlusion in the stent retriever era: a systematic review and meta-analysis.
        J Neurointerv Surg. 2016; 8: 1107-1115
        • Liu X.
        • Dai Q.
        • Ye R.
        • et al.
        Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): an open-label, randomised controlled trial.
        Lancet Neurol. 2020; 19: 115-122
        • Langezaal L.C.M.
        • van der Hoeven E.J.R.J.
        • Mont'Alverne F.J.A.
        • et al.
        Endovascular therapy for stroke due to basilar-artery occlusion.
        N Engl J Med. 2021; 20 (384(20)): 1910-1920
        • Halvorsrud K.
        • Flynn D.
        • Ford G.A.
        • et al.
        A Delphi study and ranking exercise to support commissioning services: future delivery of thrombectomy services in England.
        BMC Health Serv Res. 2018; 18: 135
        • Saver J.L.
        • Goyal M.
        • van der Lugt A.
        • et al.
        Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis.
        JAMA. 2016; 316: 1279-1288
        • Jayaraman M.V.
        • Hemendinger M.L.
        • Baird G.L.
        • et al.
        Field triage for endovascular stroke therapy: a population-based comparison.
        J Neurointerv Surg. 2020; 12: 233-239
        • Mueller-Kronast N.
        • Froehler M.T.
        • Jahan R.
        • et al.
        STRATIS Investigators. Impact of EMS bypass to endovascular capable hospitals: geospatial modeling analysis of the US STRATIS registry.
        J Neurointerv Surg. 2020; 12: 1058-1063
        • Kamal N.
        • Wiggam M.I.
        • Holodinsky J.K.
        • et al.
        Geographic modeling of best transport options for treatment of acute ischaemic stroke patients applied to policy decision making in the USA and Northern Ireland.
        IISE Trans Healthc Syst Eng. 2018; 8: 220-226
        • Allen M.
        • Pearn K.
        • James M.
        • et al.
        Maximising access to thrombectomy services for stroke in england: a modelling study.
        Eur Stroke J. 2019; 4: 39-49
        • Society of Vascular and Interventional Neurology
        RACECAT trial results.
        (Available at:) (Accessed June 2021)
        • Turc G.
        • Maïer B.
        • Naggara O.
        • et al.
        Clinical scales do not reliably identify acute ischemic stroke patients with large-artery occlusion.
        Stroke. 2016; 47: 1466-1472
        • McTaggart R.A.
        • Moldovan K.
        • Oliver L.A.
        • et al.
        Door-in-door-out time at primary stroke centers may predict outcome for emergent large vessel occlusion patients.
        Stroke. 2018; 49: 2969-2974
        • Ng F.C.
        • Low E.
        • Andrew E.
        • et al.
        Deconstruction of interhospital transfer workflow in large vessel occlusion: real-world data in the thrombectomy era.
        Stroke. 2017; 48: 1976-1979
        • Choi P.M.C.
        • Tsoi A.H.
        • Pope A.L.
        • et al.
        Door-in-door-out time of 60 minutes for stroke with emergent large vessel occlusion at a primary stroke center.
        Stroke. 2019; 50: 2829-2834
        • Wechsler L.R.
        • Demaerschalk B.M.
        • Schwamm L.H.
        • et al.
        Telemedicine quality and outcomes in stroke: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association.
        Stroke. 2017; 48: e3-e25
        • Soun J.E.
        • Chow D.S.
        • Nagamine M.
        • et al.
        Artificial intelligence and acute stroke imaging.
        AJNR Am J Neuroradiol. 2021; 42: 2-11
        • Hassan A.E.
        • Ringheanu V.M.
        • Rabah R.R.
        • et al.
        Early experience utilizing artificial intelligence shows significant reduction in transfer times and length of stay in a hub and spoke model.
        Interv Neuroradiol. 2020; 26: 615-622
        • Murray N.M.
        • Unberath M.
        • Hager G.D.
        • et al.
        Artificial intelligence to diagnose ischaemic stroke and identify large vessel occlusions: a systematic review.
        J NeuroInterv Surg. 2020; 12: 156-164
        • Department of Health and Social Care
        Data security and protection requirements.
        (Accessed December 2020)
        • The Scottish Government
        Information sharing Toolkit Scotland.
        (Available at:) (Accessed December 2020)
        • The Royal College of Radiologists
        Picture archiving and communication systems (PACS) and guidelines on diagnostic display devices.
        3rd Edition. 2019 (Available at:) (Accessed December 2020)
        • Asaithambi G.
        • Chaudhry S.A.
        • Hassan A.E.
        • et al.
        Adherence to guidelines by emergency medical services during transport of stroke patients receiving intravenous thrombolytic infusion.
        J Stroke Cerebrovasc Dis. 2013; 22: e42-e45
        • Widimský P.
        • Groch L.
        • Zelízko M.
        • et al.
        Multicentre randomized trial comparing transport to primary angioplasty vs immediate thrombolysis vs combined strategy for patients with acute myocardial infarction presenting to a community hospital without a catheterization laboratory. The PRAGUE study.
        Eur Heart J. 2000; 21: 823-831
        • Pallesen L.P.
        • Winzer S.
        • Barlinn K.
        • et al.
        Safety of inter-hospital transfer of patients with acute ischaemic stroke for evaluation of endovascular thrombectomy.
        Sci Rep. 2020; 10: 5655
        • Leibinger F.
        • Sablot D.
        • Van Damme L.
        • et al.
        Which patients require physician-led inter-hospital transport in view of endovascular therapy?.
        Cerebrovasc Dis. 2019; 48: 171-178
        • Nathanson M.H.
        • Andrzejowski J.
        • Dinsmore J.
        • et al.
        Guidelines for safe transfer of the brain-injured patient: trauma and stroke, 2019: guidelines from the association of anaesthetists and the neuro anaesthesia and critical care society.
        Anaesthesia. 2020; 75: 234-246
        • Griffin E.
        • Murphy S.
        • Sheehan M.
        • et al.
        Early repatriation post-thrombectomy: a model of care which maximises the capacity of a stroke network to treat patients with large vessel ischaemic stroke.
        J Neurointerv Surg. 2020; 12: 1166-1171
        • Prabhakaran S.
        • Fonarow G.C.
        • Smith E.E.
        • et al.
        Hospital case volume is associated with mortality in patients hospitalized with subarachnoid hemorrhage.
        Neurosurgery. 2014; 75: 500-508
        • Saver J.L.
        • Fonarow G.C.
        • Smith E.E.
        • et al.
        Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischaemic stroke.
        JAMA. 2013; 309: 2480-2488
        • Hoh B.L.
        • Rabinov J.D.
        • Pryor J.C.
        • et al.
        In-hospital morbidity and mortality after endovascular treatment of unruptured intracranial aneurysms in the United States, 1996–2000: effect of hospital and physician volume.
        AJNR Am J Neuroradiol. 2003; 24: 1409-1420
        • Pandey A.S.
        • Gemmete J.J.
        • Wilson T.J.
        • et al.
        High subarachnoid hemorrhage patient volume associated with lower mortality and better outcomes.
        Neurosurgery. 2015; 77: 462-470
        • Jalbert J.J.
        • Gerhard-Herman M.D.
        • Nguyel L.L.
        • et al.
        Relationship between physician and hospital procedure volume and mortality after carotid artery stenting among Medicare beneficiaries.
        Cir Cardiovasc Qual Outcome. 2015; 8: 81-89
        • Badheka A.O.
        • Patel N.J.
        • Grover P.
        • et al.
        Impact of annual operator and institutional volume on percutaneous coronary intervention outcomes: a 5-year United States experience (2005-2009).
        Circulation. 2014; 130: 1392-1406
        • Gupta R.
        • Horev A.
        • Nguyen T.
        • et al.
        Higher volume endovascular stroke centers have faster times to treatment, higher reperfusion rates and higher rates of good clinical outcomes.
        J Neurointerv Surg. 2013; 5: 294-297
        • Nogueira R.G.
        • Haussen D.C.
        • Castonguay A.
        • et al.
        Site experience and outcomes in the Trevo Acute Ischemic Stroke (TRACK) multicenter registry higher volumes translate in better outcomes.
        Stroke. 2019; 50: 2455-2460
        • Stein L.K.
        • Mocco J.
        • Fifi J.
        • et al.
        Correlations between physician and hospital stroke thrombectomy volumes and outcomes: a nationwide analysis.
        Stroke. 2021; 52: 2858-2865
        • Kim B.M.
        • Baek J.H.
        • Heo J.H.
        • et al.
        Effect of cumulative case volume on procedural and clinical outcomes in endovascular thrombectomy.
        Stroke. 2019; 50: 1178-1183
        • Mueller-Kronast N.H.
        • Zaidat O.O.
        • Froehler M.T.
        • et al.
        Systematic evaluation of patients treated with neurothrombectomy devices for acute ischemic stroke primary results of the STRATIS Registry.
        Stroke. 2017; 48: 2760-2768
        • Rinaldo L.
        • Brinjikji W.
        • Rabinstein A.A.
        Transfer to high-volume centers associated with reduced mortality after endovascular treatment of acute stroke.
        Stroke. 2017; 48: 1316-1321
        • British Association of Stroke Physicians
        Definitions of a stroke specialist physician.
        (Available at:) (Accessed November 2020)
        • Department of Health
        Implementing the national stroke strategy- an imaging guide.
        • Pierot L.
        • Jayaraman M.V.
        • Szikora I.
        • et al.
        Standards of practice in acute ischemic stroke intervention: international recommendations.
        J Neurointerv Surg. 2018; 10: 1121-1126
        • Lenthall R.
        • McConachie N.
        • White P.
        • et al.
        • UK Neurointerventional Group and British Society of Neuroradiologists
        BSNR training guidance for mechanical thrombectomy.
        Clin Radiol. 2017; 72 (175.e11-175.e18. Supplementary guidance. Available at:) (Accessed December 2020)
        • Sacks D.
        • Baxter B.
        • Campbell B.C.V.
        • et al.
        Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. From the American association of neurological surgeons (AANS), American society of neuroradiology (ASNR), cardiovascular and interventional radiology society of Europe (CIRSE), Canadian interventional radiology association (CIRA), congress of neurological surgeons (CNS), European society of minimally invasive neurological therapy (ESMINT), European society of neuroradiology (ESNR), European stroke organization (ESO), society for cardiovascular angiography and interventions (SCAI), society of interventional radiology (SIR), society of NeuroInterventional surgery (SNIS), and world stroke organization (WSO).
        J Vasc Interv Radiol. 2018; 29: 441-453
        • Royal College of Physicians London
        National clinical guidelines for stroke 5th edition.
        2016 (Available at:) (Accessed December 2020)
        • British Association of Stroke Physicians
        Meeting the future challenge of stroke. Stroke medicine consultant workforce requirements 2019–20.
        (Available at:) (Accessed November 2020)
        • Pilgram-Pastor S.M.
        • Piechowiak E.I.
        • Dobrocky T.
        • et al.
        Stroke thrombectomy complication management.
        J Neurointerv Surg. 2021; (Accessed June 2021)https://doi.org/10.1136/neurintsurg-2021-017349
        • Deb-Chatterji M.
        • Pinnschmidt H.
        • Flottmann F.
        • et al.
        Stroke patients treated by thrombectomy in real life differ from cohorts of the clinical trials: a prospective observational study.
        BMC Neurol. 2020; 20: 81
        • Zaidat O.O.
        • Castonguay A.C.
        • Linfante I.
        First pass effect: a new measure for stroke thrombectomy devices.
        Stroke. 2018; 49: 660-666
        • Brinjikji W.
        • Starke R.M.
        • Murad M.H.
        • et al.
        Impact of balloon guide catheter on technical and clinical outcomes: a systematic review and meta-analysis.
        J Neurointerv Surg. 2018; 10: 335-339
        • Pereira V.
        • Siddiqui A.
        • Jovin T.
        • et al.
        P-016 role of balloon guiding catheter in mechanical thrombectomy using stentretrivers subgroup analysis of swift prime: abstract P-016 Table 1.
        J Neurointerv Surg. 2015; 7: A30
        • Nguyen T.N.
        • Malisch T.
        • Castonguay A.C.
        Balloon guide catheter improves revascularization and clinical outcomes with the Solitaire device: analysis of the North American Solitaire Acute Stroke Registry.
        Stroke. 2014; 45: 141-145
        • Blasco J.
        • Puig J.
        • Daunis-I-Estadella P.
        • et al.
        Balloon guide catheter improvements in thrombectomy outcomes persist despite advances in intracranial aspiration technology.
        J Neurointerv Surg. 2021; 13: 773-778
        • Zaidat O.O.
        • Mueller-Kronast N.H.
        • Hassan A.E.
        • et al.
        Impact of balloon guide catheter use on clinical and angiographic outcomes in the STRATIS Stroke Thrombectomy Registry.
        Stroke. 2019; 50: 697-704
        • Nguyen T.N.
        • Castonguay A.C.
        • Nogueira R.G.
        • et al.
        Effect of balloon guide catheter on clinical outcomes and reperfusion in Trevo thrombectomy.
        J Neurointerv Surg. 2019; 11: 861-865
        • Lapergue B.
        • Blanc R.
        • Gory B.
        • et al.
        Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: the ASTER Randomized Clinical Trial.
        JAMA. 2017; 318: 443-452
        • Turk 3rd, A.S.
        • Siddiqui A.
        • Fifi J.T.
        • et al.
        Aspiration thrombectomy versus stent retriever thrombectomy as first-line approach for large vessel occlusion (COMPASS): a multicentre, randomised, open label, blinded outcome, non-inferiority trial.
        Lancet. 2019; 393: 998-1008
        • Jindal G.
        • Serulle Y.
        • Miller T.
        • et al.
        Stent retrieval thrombectomy in acute stoke is facilitated by the concurrent use of intracranial aspiration catheters.
        J Neurointerv Surg. 2017; 9: 944-947
        • Hesse A.C.
        • Behme D.
        • Kemmling A.
        • et al.
        Comparing different thrombectomy techniques in five large-volume centers: a “real world” observational study.
        J Neurointerv Surg. 2018; 10: 525-529
        • McTaggart R.A.
        • Tung E.L.
        • Yaghi S.
        • et al.
        Continuous aspiration prior to intracranial vascular embolectomy (CAPTIVE): a technique which improves outcome.
        J Neurointerv Surg. 2017; 9: 1154-1159
        • Maus V.
        • Behme D.
        • Kabbasch C.
        • et al.
        Maximizing first-pass complete reperfusion with SAVE.
        Clin Neuroradiol. 2018; 28: 327-338
        • Lapergue B.
        • Labreuche J.
        • Blanc R.
        • et al.
        Combined use of contact aspiration and the stent retriever technique versus stent retriever alone for recanalization in acute cerebral infarction: the randomized ASTER 2 study protocol.
        J Neurointerv Surg. 2020; 12: 471-476
        • Hellegering J.
        • Uyttenboogaart M.
        • Bokkers R.P.H.
        • et al.
        Treatment of the extracranial carotid artery in tandem lesions during endovascular treatment of acute ischaemic stroke: a systematic review and meta-analysis.
        Ann Transl Med. 2020; 8: 1278
        • Zhu F.
        • Bracard S.
        • Anxionnat R.
        • et al.
        Impact of emergent cervical carotid stenting in tandem occlusion strokes treated by thrombectomy: a review of the TITAN Collaboration.
        Front Neurol. 2019; 11: 206
        • van de Graaf R.A.
        • Chalos V.
        • Del Zoppo G.J.
        • et al.
        Periprocedural antithrombotic treatment during acute mechanical thrombectomy for ischaemic stroke: a systematic review.
        Front Neurol. 2018; 9: 238
        • Premat K.
        • Dechartres A.
        • Lenck S.
        • et al.
        Rescue stenting versus medical care alone in refractory large vessel occlusions: a systematic review and meta-analysis.
        Neuroradiology. 2020; 62: 629-637
        • Siddiqui A.H.
        • Waqas M.
        • Neumaier J.
        • et al.
        Radial first or patient first: a case series and meta-analysis of transradial versus transfemoral access for acute ischaemic stroke intervention.
        J Neurointerv Surg. 2021; 13: 687-692
        • Phillips T.J.
        • Crockett M.T.
        • Selkirk G.D.
        • et al.
        Transradial versus transfemoral access for anterior circulation mechanical thrombectomy: analysis of 375 consecutive cases.
        Stroke Vasc Neurol. 2020; 6: 207-213
        • Colombo E.
        • Rinaldo L.
        • Lanzino G.
        Direct carotid puncture in acute ischaemic stroke intervention Stroke.
        Vasc Neurol. 2020; 29 (5(1)): 71-79
        • Almallouhi E.
        • Al Kasab S.
        • Sattur M.G.
        • et al.
        Incorporation of transradial approach in neuroendovascular procedures: defining benchmarks for rates of complications and conversion to femoral access.
        J Neurointerv Surg. 2020; 12: 1122-1126
        • Flores A.
        • Ustrell X.
        • Seró L.
        • et al.
        Vascular occlusion evolution in endovascular reperfusion candidates transferred from primary to comprehensive stroke centers.
        Cerebrovasc Dis. 2020; 49: 550-555
        • Requena M.
        • Olivé-Gadea M.
        • Boned S.
        • et al.
        Clinical and neuroimaging criteria to improve the workflow in transfers for endovascular treatment evaluation.
        Int J Stroke. 2020; 15: 988-994
        • Boulouis G.
        • Lauer A.
        • Siddiqui A.K.
        • et al.
        Clinical imaging factors associated with infarct progression in patients with ischemic stroke during transfer for mechanical thrombectomy.
        JAMA Neurol. 2017; 74: 1361-1367
        • Fuentes B.
        • Alonso de Leciñana M.
        • Ximénez-Carrillo A.
        • et al.
        Futile interhospital transfer for endovascular treatment in acute ischemic stroke: the Madrid Stroke Network experience.
        Stroke. 2015; 46: 2156-2161
        • Royal College of Radiologists 2017
        Standards for providing a 24-h interventional radiology service.
        (Available at:) (Accessed November 2020)
        • Zhu F.
        • Ben Hassen W.
        • Bricout N.
        • et al.
        Effect of operator's experience on proficiency in mechanical thrombectomy: a multicenter study.
        Stroke. 2021; 52: 2736-2742
        • Brinjikji W.
        • Pasternak J.
        • Murad M.H.
        • et al.
        Anesthesia-related outcomes for endovascular stroke revascularization: a systematic review and meta-analysis.
        Stroke. 2017; 48: 2784-2791
        • Goyal N.
        • Malhotra K.
        • Ishfaq M.F.
        • et al.
        Current evidence for anesthesia management during endovascular stroke therapy: updated systematic review and meta-analysis.
        J Neurointerv Surg. 2019; 11: 107-113
        • Jing R.
        • Dai H.J.
        • Lin F.
        • et al.
        Conscious sedation versus general anesthesia for patients with acute ischaemic stroke undergoing endovascular therapy: a systematic review and meta-analysis.
        Biomed Res Int. 2018; : 2318489
        • Campbell B.C.V.
        • van Zwam W.H.
        • Goyal M.
        • et al.
        Effect of general anaesthesia on functional outcome in patients with anterior circulation ischaemic stroke having endovascular thrombectomy versus standard care: a meta-analysis of individual patient data.
        Lancet Neurol. 2018; 17: 47-53
        • Lowhagen Henden P.
        • Rentzos A.
        • Karlsson J.E.
        • et al.
        General anesthesia versus conscious sedation for endovascular treatment of acute ischaemic stroke: the Anstroke trial (Anesthesia during Stroke).
        Stroke. 2017; 48: 1601-1607
        • Simonsen C.Z.
        • Yoo A.J.
        • Sørensen L.H.
        • et al.
        Effect of general anesthesia and conscious sedation during endovascular therapy on infarct growth and clinical outcomes in acute ischaemic stroke: a randomized clinical trial.
        JAMA Neurol. 2018; 75: 470
        • Schonenberger S.
        • Uhlmann L.
        • Hacke W.
        • et al.
        Effect of conscious sedation versus general anesthesia on early neurological improvement among patients with ischaemic stroke undergoing endovascular thrombectomy: a randomized clinical trial.
        JAMA. 2016; 316: 1986-1996
        • Powers W.J.
        • Rabinstein A.A.
        • Ackerson T.
        • et al.
        American Heart Association Stroke Council. 2018 Guidelines for the early management of patients with acute ischaemic stroke: a guideline for health-care professionals from the American Heart Association/American Stroke Association.
        Stroke. 2018; 49: e46-e110
        • Flottmann F.
        • Leischner H.
        • Broocks G.
        • et al.
        Emergency conversion to general anesthesia is a tolerable risk in patients undergoing mechanical thrombectomey.
        AJNR Am J Neuroradiol. 2020; 41: 122-127
        • Rasmussen M.
        • Schönenberger S.
        • Hendèn P.L.
        • et al.
        Blood pressure thresholds and neurologic outcomes after endovascular therapy for acute ischemic stroke: an analysis of individual patient data from 3 randomized clinical trials.
        JAMA Neurol. 2020; 77: 622-631
        • Malhotra K.
        • Goyal N.
        • Katsanos A.H.
        • et al.
        Association of blood pressure with outcomes in acute stroke thrombectomy.
        Hypertension. 2020; 75: 730-739
        • Anadani M.
        • Orabi M.Y.
        • Alawieh A.
        • et al.
        Blood pressure and outcome after mechanical thrombectomy with successful revascularization.
        Stroke. 2019; 50: 2448-2454
        • Goyal N.
        • Tsivgoulis G.
        • Pandhi A.
        • et al.
        Blood pressure levels post mechanical thrombectomy and outcomes in non-recanalized large vessel occlusion patients.
        J Neurointerv Surg. 2018; 10: 925-931
        • Anderson C.S.
        • Huang Y.
        • Lindley R.I.
        • et al.
        ENCHANTED Investigators and Coordinators. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): an international, randomised, open-label, blinded-endpoint, phase 3 trial.
        Lancet. 2019; 393: 877-888