Advertisement

Spectrum of physiological and pathological cardiac and pericardial uptake of FDG in oncology PET-CT

Published:November 23, 2012DOI:https://doi.org/10.1016/j.crad.2012.09.007
      Cardiac uptake of 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) is frequently observed on FDG positron-emission tomography combined with computed tomography (PET-CT) performed for diagnosis, staging, and assessment of therapeutic response of lymphoma and solid cancers, despite careful patient preparation to limit myocardial glucose substrate utilisation. We illustrate the varied physiological patterns of cardiac FDG uptake, and show a spectrum of pathological conditions causing FDG uptake within myocardial and pericardial structures, due to clinically important benign and malignant diseases. Recognition and awareness of these various causes of FDG uptake in the heart, along with the appropriate use of correlative contrast-enhanced CT and magnetic resonance imaging (MRI) will facilitate correct interpretation.
      To read this article in full you will need to make a payment
      Subscribe to Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Del Rocio Estrada-Sanchez G.
        • Altamirano-Ley J.
        • Ochoa-Carrillo F.J.
        Normal variants and frequent pitfalls with (18)FDG PET/CT study.
        Cir Cir. 2007; 75: 491-497
        • Fukuchi K.
        • Ohta H.
        • Matsumura K.
        • et al.
        Benign variations and incidental abnormalities of myocardial FDG uptake in the fasting state as encountered during routine oncology positron emission tomography studies.
        Br J Radiol. 2007; 80: 3-11
        • Makis W.
        • Ciarallo A.
        • Hickeson M.
        • et al.
        Spectrum of malignant pleural and pericardial disease on FDG PET/CT.
        AJR Am J Roentgenol. 2012; 198: 678-685
        • Maurer A.H.
        • Burshteyn M.
        • Adler L.P.
        • et al.
        How to differentiate benign versus malignant cardiac and paracardiac 18F FDG uptake at oncologic PET/CT.
        RadioGraphics. 2011; 31: 1287-1305
        • Bengel F.M.
        • Higuchi T.
        • Javadi M.S.
        • et al.
        Cardiac positron emission tomography.
        J Am Coll Cardiol. 2009; 54: 1-15
        • Ghosh N.
        • Rimoldi O.E.
        • Beanlands R.S.
        • et al.
        Assessment of myocardial ischaemia and viability: role of positron emission tomography.
        Eur Heart J. 2010; 31: 2984-2995
        • Lalonde L.
        • Ziadi M.C.
        • Beanlands R.
        Cardiac positron emission tomography: current clinical practice.
        Cardiol Clin. 2009; 27: 237-255
        • Lopaschuk G.D.
        • Stanley W.C.
        Glucose metabolism in the ischemic heart.
        Circulation. 1997; 95: 313-315
        • Inglese E.
        • Leva L.
        • Matheoud R.
        • et al.
        Spatial and temporal heterogeneity of regional myocardial uptake in patients without heart disease under fasting conditions on repeated whole-body 18F-FDG PET/CT.
        J Nucl Med. 2007; 48: 1662-1669
        • Gropler R.J.
        • Siegel B.A.
        • Lee K.J.
        • et al.
        Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans.
        J Nucl Med. 1990; 31: 1749-1756
        • Cheng V.Y.
        • Slomka P.J.
        • Ahlen M.
        • et al.
        Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: a randomized controlled trial.
        J Nucl Cardiol. 2010; 17: 286-291
        • Williams G.
        • Kolodny G.M.
        Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet.
        AJR Am J Roentgenol. 2008; 190: W151-W156
        • Yamanouchi M.
        • Yoshida K.
        • Niwayama H.
        • et al.
        Effect of the duration of fasting on myocardial fluorine-18-fluorodeoxyglucose positron emission tomography images in normal males.
        Jpn Circ J. 1996; 60: 319-327
        • de Groot M.
        • Meeuwis A.P.
        • Kok P.J.
        • et al.
        Influence of blood glucose level, age and fasting period on non-pathological FDG uptake in heart and gut.
        Eur J Nucl Med Mol Imaging. 2005; 32: 98-101
        • Kaneta T.
        • Hakamatsuka T.
        • Takanami K.
        • et al.
        Evaluation of the relationship between physiological FDG uptake in the heart and age, blood glucose level, fasting period, and hospitalization.
        Ann Nucl Med. 2006; 20: 203-208
        • Viljanen A.P.
        • Karmi A.
        • Borra R.
        • et al.
        Effect of caloric restriction on myocardial fatty acid uptake, left ventricular mass, and cardiac work in obese adults.
        Am J Cardiol. 2009; 103: 1721-1726
        • Langah R.
        • Spicer K.
        • Gebregziabher M.
        • et al.
        Effectiveness of prolonged fasting 18F-FDG PET-CT in the detection of cardiac sarcoidosis.
        J Nucl Cardiol. 2009; 16: 801-810
        • Ohira H.
        • Tsujino I.
        • Yoshinaga K.
        18F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis.
        Eur J Nucl Med Mol Imaging. 2011; 38: 1773-1783
        • Okumura W.
        • Iwasaki T.
        • Toyama T.
        • et al.
        Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis.
        J Nucl Med. 2004; 45: 1989-1998
        • Ohira H.
        • Tsujino I.
        • Sato T.
        • et al.
        Early detection of cardiac sarcoid lesions with (18)F-fluoro-2-deoxyglucose positron emission tomography.
        Intern Med. 2011; 50: 1207-1209
        • Fallavollita J.A.
        • Luisi Jr., A.J.
        • Yun E.
        • et al.
        An abbreviated hyperinsulinemic–euglycemic clamp results in similar myocardial glucose utilization in both diabetic and non-diabetic patients with ischemic cardiomyopathy.
        J Nucl Cardiol. 2010; 17: 637-645
        • Schroder O.
        • Hor G.
        • Hertel A.
        • et al.
        Combined hyperinsulinaemic glucose clamp and oral acipimox for optimizing metabolic conditions during 18F-fluorodeoxyglucose gated PET cardiac imaging: comparative results.
        Nucl Med Commun. 1998; 19: 867-874
        • Vitale G.D.
        • deKemp R.A.
        • Ruddy T.D.
        • et al.
        Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction.
        J Nucl Med. 2001; 42: 1730-1736
        • Le Meunier L.
        • Maass-Moreno R.
        • Carrasquillo J.A.
        • et al.
        PET/CT imaging: effect of respiratory motion on apparent myocardial uptake.
        J Nucl Cardiol. 2006; 13: 821-830
        • Chin B.B.
        • Nakamoto Y.
        • Kraitchman D.L.
        • et al.
        PET-CT evaluation of 2-deoxy-2-[18F]fluoro-d-glucose myocardial uptake: effect of respiratory motion.
        Mol Imaging Biol. 2003; 5: 57-64
        • Bass A.
        • Stejskalova M.
        • Ostadal B.
        • et al.
        Differences between atrial and ventricular energy-supplying enzymes in five mammalian species.
        Physiol Res. 1993; 42: 1-6
        • Fujii H.
        • Ide M.
        • Yasuda S.
        • et al.
        Increased FDG uptake in the wall of the right atrium in people who participated in a cancer screening program with whole-body PET.
        Ann Nucl Med. 1999; 13: 55-59
        • Meka M.
        • Depuey E.G.
        • Bhargava P.
        Focal FDG activity in the region of right atrium: coregistered CT identifies three benign etiologies.
        Radiol Case Rep [Online]. 2008; 3: 120
        • von Schulthess G.K.
        Clinical molecular anatomic imaging.
        in: von Schulthess G.K. Normal PET and PET/CT body scans: imaging pitfalls and artifacts. Lippincott, Williams & Wilkins, Baltimore, MD2002: 252-270
        • Kuester L.B.
        • Fischman A.J.
        • Fan C.M.
        • et al.
        Lipomatous hypertrophy of the interatrial septum: prevalence and features on fusion 18F fluorodeoxyglucose positron emission tomography/CT.
        Chest. 2005; 128: 3888-3893
        • Fan C.M.
        • Fischman A.J.
        • Kwek B.H.
        • et al.
        Lipomatous hypertrophy of the interatrial septum: increased uptake on FDG PET.
        AJR Am J Roentgenol. 2005; 184: 339-342
        • Gerard P.S.
        • Finestone H.
        • Lazzaro R.
        • et al.
        Intermittent FDG uptake in lipomatous hypertrophy of the interatrial septum on serial PET/CT scans.
        Clin Nucl Med. 2008; 33: 602-605
        • Kim S.
        • Ding Y.G.
        • Krynyckyi B.R.
        • et al.
        Increased F-18 FDG uptake in the right auricle of a displaced heart: potential cause of a false-positive pathologic mediastinal node.
        Clin Nucl Med. 2005; 30: 97-99
        • Nguyen B.D.
        PET demonstration of left atrial appendage in chronic atrial fibrillation.
        Clin Nucl Med. 2005; 30: 177-179
        • Biancheri I.
        • Zsigmond R.
        • Angoue O.
        • et al.
        F-18 FDG PET identification of right atrium metastasis from a vesical carcinoma.
        Clin Nucl Med. 2007; 32: 812-815
        • Garcia J.R.
        • Simo M.
        • Huguet M.
        • et al.
        Usefulness of 18-fluorodeoxyglucose positron emission tomography in the evaluation of tumor cardiac thrombus from renal cell carcinoma.
        Clin Transl Oncol. 2006; 8: 124-128
        • Lu Y.
        • Ulaner G.
        FDG PET/CT demonstration of right atrium metastasis overlooked on contrast-enhanced CT.
        Clin Nucl Med. 2011; 36: 405-406
        • Orcurto M.V.
        • Delaloye A.B.
        • Letovanec I.
        • et al.
        Detection of an asymptomatic right-ventricle cardiac metastasis from a small-cell lung cancer by F-18-FDG PET/CT.
        J Thorac Oncol. 2009; 4: 127-130
        • Lin E.C.
        Isolated papillary muscle uptake on FDG PET/CT.
        Clin Nucl Med. 2007; 32: 76-78
        • Kluge R.
        • Barthel H.
        • Pankau H.
        • et al.
        Different mechanisms for changes in glucose uptake of the right and left ventricular myocardium in pulmonary hypertension.
        J Nucl Med. 2005; 46: 25-31
        • Yeo T.C.
        • Dujardin K.S.
        • Tei C.
        • et al.
        Value of a Doppler-derived index combining systolic and diastolic time intervals in predicting outcome in primary pulmonary hypertension.
        Am J Cardiol. 1998; 81: 1157-1161
        • Truong M.T.
        • Erasmus J.J.
        • Munden R.F.
        • et al.
        Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET/CT.
        AJR Am J Roentgenol. 2004; 183: 1127-1132
        • Sureshbabu W.
        • Mawlawi O.
        PET/CT imaging artifacts.
        J Nucl Med Technol. 2005; 33 (quiz 163–154): 156-161
        • Ghafarian P.
        • Aghamiri S.M.
        • Ay M.R.
        • et al.
        Is metal artefact reduction mandatory in cardiac PET/CT imaging in the presence of pacemaker and implantable cardioverter defibrillator leads?.
        Eur J Nucl Med Mol Imaging. 2011; 38: 252-262
        • Altehoefer C.
        LBBB: challenging our concept of metabolic heart imaging with fluorine-18-FDG and PET?.
        J Nucl Med. 1998; 39: 263-265
        • Masci P.G.
        • Marinelli M.
        • Piacenti M.
        • et al.
        Myocardial structural, perfusion, and metabolic correlates of left bundle branch block mechanical derangement in patients with dilated cardiomyopathy: a tagged cardiac magnetic resonance and positron emission tomography study.
        Circ Cardiovasc Imaging. 2010; 3: 482-490
        • Thompson K.
        • Saab G.
        • Birnie D.
        • et al.
        Is septal glucose metabolism altered in patients with left bundle branch block and ischemic cardiomyopathy?.
        J Nucl Med. 2006; 47: 1763-1768
        • Zanco P.
        • Desideri A.
        • Mobilia G.
        • et al.
        Effects of left bundle branch block on myocardial FDG PET in patients without significant coronary artery stenoses.
        J Nucl Med. 2000; 41: 973-977
        • Cho M.N.
        • Mehta S.K.
        • Matulevicius S.
        • et al.
        Differentiating true versus pseudo left ventricular aneurysm: a case report and review of diagnostic strategies.
        Cardiol Rev. 2006; 14: e27-30
        • Zoffoli G.
        • Mangino D.
        • Venturini A.
        • et al.
        Diagnosing left ventricular aneurysm from pseudo-aneurysm: a case report and a review in literature.
        J Cardiothorac Surg. 2009; 4: 11
        • Park J.S.
        • Cho I.H.
        • Shin D.G.
        • et al.
        Hypertrophic cardiomyopathy complicated by left ventricular apical necrosis and aneurysm in a young man: FDG-PET findings.
        Korean J Intern Med. 2007; 22: 28-31
        • Shao D.
        • Wang S.X.
        • Liang C.H.
        • et al.
        Differentiation of malignant from benign heart and pericardial lesions using positron emission tomography and computed tomography.
        J Nucl Cardiol. 2011; 18: 668-677
        • Pandit N.
        • Yeung H.W.
        F-18 FDG pericardial uptake secondary to recent cardiac surgery.
        Clin Nucl Med. 2001; 26: 984-985
        • Testempassi E.
        • Kubota K.
        • Morooka M.
        • et al.
        Constrictive tuberculous pericarditis diagnosed using 18F-fluorodeoxyglucose positron emission tomography: a report of two cases.
        Ann Nucl Med. 2010; 24: 421-425
        • Losik S.B.
        • Studentsova Y.
        • Margouleff D.
        Chemotherapy-induced pericarditis on F-18 FDG positron emission tomography scan.
        Clin Nucl Med. 2003; 28: 913-915
        • James O.G.
        • Christensen J.D.
        • Wong T.Z.
        • et al.
        Utility of FDG PET/CT in inflammatory cardiovascular disease.
        RadioGraphics. 2011; 31: 1271-1286
        • Strobel K.
        • Schuler R.
        • Genoni M.
        Visualization of pericarditis with fluoro-deoxy-glucose-positron emission tomography/computed tomography.
        Eur Heart J. 2008; 29: 1212
        • Sekhri V.
        • Sanal S.
        • Delorenzo L.J.
        • et al.
        Cardiac sarcoidosis: a comprehensive review.
        Arch Med Sci. 2011; 7: 546-554
        • Chapelon-Abric C.
        • de Zuttere D.
        • Duhaut P.
        • et al.
        Cardiac sarcoidosis: a retrospective study of 41 cases.
        Medicine (Baltimore). 2004; 83: 315-334
        • Jain V.
        • Hasselquist S.
        • Delaney M.D.
        PET scanning in sarcoidosis.
        Ann N Y Acad Sci. 2011; 1228: 46-58
        • Iwai K.
        • Takemura T.
        • Kitaichi M.
        • et al.
        Pathological studies on sarcoidosis autopsy. II. Early change, mode of progression and death pattern.
        Acta Pathol Jpn. 1993; 43: 377-385
        • Uemura A.
        • Morimoto S.
        • Hiramitsu S.
        • et al.
        Histologic diagnostic rate of cardiac sarcoidosis: evaluation of endomyocardial biopsies.
        Am Heart J. 1999; 138: 299-302
        • Sekiguchi M.
        • Yazaki Y.
        • Isobe M.
        • et al.
        Cardiac sarcoidosis: diagnostic, prognostic, and therapeutic considerations.
        Cardiovasc Drugs Ther. 1996; 10: 495-510
        • Perry A.
        • Vuitch F.
        Causes of death in patients with sarcoidosis. A morphologic study of 38 autopsies with clinicopathologic correlations.
        Arch Pathol Lab Med. 1995; 119: 167-172
        • Youssef G.
        • Leung E.
        • Mylonas I.
        • et al.
        The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience.
        J Nucl Med. 2012; 53: 241-248
        • Tahara N.
        • Tahara A.
        • Nitta Y.
        • et al.
        Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis.
        JACC Cardiovasc Imaging. 2010; 3: 1219-1228
        • Matthews R.
        • Bench T.
        • Meng H.
        • et al.
        Diagnosis and monitoring of cardiac sarcoidosis with delayed-enhanced MRI and (18)F-FDG PET-CT.
        J Nucl Cardiol. 2012; 19: 807-810
        • Ohira H.
        • Tsujino I.
        • Ishimaru S.
        • et al.
        Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis.
        Eur J Nucl Med Mol Imaging. 2008; 35: 933-941
        • Tadamura E.
        • Yamamuro M.
        • Kubo S.
        • et al.
        Effectiveness of delayed enhanced MRI for identification of cardiac sarcoidosis: comparison with radionuclide imaging.
        AJR Am J Roentgenol. 2005; 185: 110-115
        • Agostini D.
        • Babatasi G.
        • Galateau F.
        • et al.
        Detection of cardiac myxoma by F-18 FDG PET.
        Clin Nucl Med. 1999; 24: 159-160
        • Martinez-Rodriguez I.
        • Banzo I.
        • Quirce R.
        • et al.
        F-18 FDG PET/CT uptake by a cardiac hemangioma.
        Clin Nucl Med. 2010; 35: 330-331
        • Godino C.
        • Messa C.
        • Gianolli L.
        • et al.
        Multifocal, persistent cardiac uptake of [18-F]-fluoro-deoxy-glucose detected by positron emission tomography in patients with acute myocardial infarction.
        Circ J. 2008; 72: 1821-1828
        • Jingu K.
        • Kaneta T.
        • Nemoto K.
        • et al.
        The utility of 18F-fluorodeoxyglucose positron emission tomography for early diagnosis of radiation-induced myocardial damage.
        Int J Radiat Oncol Biol Phys. 2006; 66: 845-851
        • Vos F.J.
        • Bleeker-Rovers C.P.
        • Kullberg B.J.
        • et al.
        Cost-effectiveness of routine (18)F-FDG PET/CT in high-risk patients with Gram-positive bacteremia.
        J Nucl Med. 2011; 52: 1673-1678
        • Yeh C.L.
        • Liou J.Y.
        • Chen S.W.
        • et al.
        Infective endocarditis detected by (1)(8)F-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography in a patient with occult infection.
        Kaohsiung J Med Sci. 2011; 27: 528-531
        • Yen R.F.
        • Chen Y.C.
        • Wu Y.W.
        • et al.
        Using 18-fluoro-2-deoxyglucose positron emission tomography in detecting infectious endocarditis/endoarteritis: a preliminary report.
        Acad Radiol. 2004; 11: 316-321
        • Moghadam-Kia S.
        • Nawaz A.
        • Millar B.C.
        • et al.
        Imaging with (18)F-FDG-PET in infective endocarditis: promising role in difficult diagnosis and treatment monitoring.
        Hell J Nucl Med. 2009; 12: 165-167
        • Israel O.
        • Weiler-Sagie M.
        • Rispler S.
        • et al.
        PET/CT quantitation of the effect of patient-related factors on cardiac 18F-FDG uptake.
        J Nucl Med. 2007; 48: 234-239
        • Gurney K.A.
        • Cartwright R.A.
        Increasing incidence and descriptive epidemiology of extranodal non-Hodgkin lymphoma in parts of England and Wales.
        Hematol J. 2002; 3: 95-104
        • McDonnell P.J.
        • Mann R.B.
        • Bulkley B.H.
        Involvement of the heart by malignant lymphoma: a clinicopathologic study.
        Cancer. 1982; 49: 944-951
        • Petersen C.D.
        • Robinson W.A.
        • Kurnick J.E.
        Involvement of the heart and pericardium in the malignant lymphomas.
        Am J Med Sci. 1976; 272: 161-165
        • Rao S.
        • Langston A.
        • Galt J.R.
        • et al.
        Extramedullary acute myeloid leukemia and the use of FDG-PET/CT.
        Clin Nucl Med. 2009; 34: 365-366
        • Acikgoz G.
        • Houseni M.
        • Alkhawaldeh K.
        • et al.
        Detection of extramedullary and extranodal involvement of leukemia with FDG-PET.
        J Nucl Med. 2006; 47: 51P
        • Stolzel F.
        • Rollig C.
        • Radke J.
        • et al.
        18F-FDG-PET/CT for detection of extramedullary acute myeloid leukemia.
        Haematologica. 2011; 96: 1552-1556
        • Acikgoz G.
        • Houseni M.
        • Bathaii M.
        • et al.
        FDG-PET evaluation of patients with leukemia.
        J Nucl Med. 2006; 47: 50P
        • Nakajo M.
        • Jinnouchi S.
        • Inoue H.
        • et al.
        FDG PET findings of chronic myeloid leukemia in the chronic phase before and after treatment.
        Clin Nucl Med. 2007; 32: 775-778
        • Mcallister H.A.
        • Fenoglio J.J.
        Tumors of the cardiovascular system.
        Castle House Publications, Washington, DC1979
        • Johnson T.R.
        • Becker C.R.
        • Wintersperger B.J.
        • et al.
        Images in cardiovascular medicine. Detection of cardiac metastasis by positron-emission tomography-computed tomography.
        Circulation. 2005; 112: e61-62
        • Burke A.P.
        • Cowan D.
        • Virmani R.
        Primary sarcomas of the heart.
        Cancer. 1992; 69: 387-395
        • Bouma W.
        • Lexis C.P.
        • Willems T.P.
        • et al.
        Successful surgical excision of primary right atrial angiosarcoma.
        J Cardiothorac Surg. 2011; 6: 47
        • Freudenberg L.S.
        • Rosenbaum S.J.
        • Schulte-Herbruggen J.
        • et al.
        Diagnosis of a cardiac angiosarcoma by fluorine-18 fluordeoxyglucose positron emission tomography.
        Eur Radiol. 2002; 12: S158-S161
        • Hori Y.
        • Funabashi N.
        • Miyauchi H.
        • et al.
        Angiosarcoma in the right atria demonstrated by fusion images of multislice computed tomography and positron emission tomography using F-18 fluoro-deoxyglucose.
        Int J Cardiol. 2007; 123: e15-17
        • Ost P.
        • Rottey S.
        • Smeets P.
        • et al.
        F-18 fluorodeoxyglucose PET/CT scanning in the diagnostic work-up of a primary pericardial mesothelioma: a case report.
        J Thorac Imaging. 2008; 23: 35-38